In vitro antibacterial activity of the metal oxide nanoparticles against urinary tract infectious bacterial pathogens

Sundaram Ravikumar¹, Ramasamy Gokulakrishnan¹, Pandi Boomi²

¹School of Marine Sciences, Department of Oceanography and Coastal Area Studies, Alagappa University, Thondi Campus, Thondi–623 409, Ramanathapuram District, Tamil Nadu, India
²School of Chemistry, Department of Industrial Chemistry, Alagappa University, Karaikudi–630 003, Sivangai District, Tamil Nadu, India

ARTICLE INFO

Article history:
Received 15 October 2011
Received in revised form 27 December 2011
Accepted 28 February 2012
Available online 28 April 2012

Keywords:
Antibacterial activity
Metal oxide nanoparticles
Minimal inhibitory concentration
Time kill assay
UTI pathogens
Minimal bactericidal concentration
Well diffusion method
Nanoparticle
Infectious bacterial pathogen

ABSTRACT

Objective: To investigate the antibacterial properties of the five metal oxide nanoparticles viz., Al2O3, Fe3O4, CoO2, ZrO2, and MgO against urinary tract infectious pathogens viz., Pseudomonas sp., Enterobacter sp., Klebsiella sp., Escherichia coli (E. coli), Proteus morganii (P. morganii) and Staphylococcus aureus (S. aureus). Methods: The antibacterial activity of the five different nanoparticles was assessed by well diffusion method. Different concentrations of the nanoparticles were analyzed by minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) techniques. Finally, the potential nanoparticle Al2O3, which showed maximum antibacterial sensitivity was also subjected for the time kill assay method. Results: Among the nanoparticles, Al2O3 nanoparticle showed maximum sensitivity (16.00±0.21) mm against E. coli. None of the nanoparticles showed activity against Pseudomonas sp. The MIC results also revealed that, the Al2O3 nanoparticle showed maximum inhibition at the concentration of 5 μg/mL against E. coli, followed by 10 μg/mL against Klebsiella sp. and P. morganii, respectively. Moreover, the time kill assay revealed that, the bacterial growth was maximum inhibited at the concentration of 5 μg/mL from the 2nd h. Conclusions: It can be concluded from the present findings that, the Al2O3 nanoparticle can be used as an alternative antibacterial agent for the urinary bacterial diseases after completing successful clinical trials.

1. Introduction

The infectious diseases remain one of the greatest challenges to global health. Urinary tract infection (UTI) is the second most common clinical disease and possesses a significant healthcare burden[1]. This infectious disease can alter the urinary system either structurally (complicated UTI) or functionally. About 80 to 90 percent of UTIs are caused by a single type of bacteria. Escherichia coli (E. coli) is the most common cause of uncomplicated urinary tracts (anatomically normal urinary tract). The diagnosis of UTI is very difficult for the elder people because of the asymptomatic bacteriuria[2]. So there is an urgent need to produce the new antibacterial agents from different sources. The terrestrial plant such as Phylanthus amarus and Paracetema nigrescens showed potential antibacterial activity against UTI pathogens[3]. Moreover, the marine resources such as mangroves, seaweeds, sponges and sea grasses already showed antibacterial[4–8], antifungal[8], and antiplasmodial[9–13] activities. However, most of the antibacterial agent entered into clinical practice, resistance was reported in at least one bacterial pathogen[14]. During the past decades, the nanoparticles are attracting a great deal in biological and pharmaceutical applications[15–18]. Moreover, the metal oxide nanoparticles have good antibacterial activity and antimicrobial formulations comprising nanoparticles could be used as an effective bactericidal agent[19–24]. Nevertheless, studies related with metal oxide nanoparticles against urinary tract infectious pathogens are too limited. Hence, the present study has been made an attempt to find out the potential nanoparticles against urinary tract infectious pathogens.
2. Materials and methods

Table 1
Properties of nanoparticles.

<table>
<thead>
<tr>
<th>Formula</th>
<th>Molecular weight</th>
<th>Form</th>
<th>Particle size (nm) (transmission electron microscope)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al₂O₃</td>
<td>101.96</td>
<td>Powder</td>
<td><50</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>231.53</td>
<td>Powder</td>
<td>9-11</td>
</tr>
<tr>
<td>CeO₂</td>
<td>172.11</td>
<td>Powder</td>
<td><25</td>
</tr>
<tr>
<td>ZrO₂</td>
<td>125.22</td>
<td>Powder</td>
<td><100</td>
</tr>
<tr>
<td>MgO</td>
<td>40.30</td>
<td>Powder</td>
<td><30</td>
</tr>
</tbody>
</table>

2.1. Isolation of UTI bacterial pathogens

A total of 50 urine samples from 25 male and 25 female patients admitted in the hospitals as UTI problems were collected from different hospitals and laboratory localities along the coastal area of Thondi, Ramanathapuram District, Tamil Nadu, India (Lat. 9° 44’ N and Long. 79° 10’ E) in a separate sterile wide mouth bottle. Before collecting a sample, the women were instructed to swab the vulvae with a separate sterile wide mouth bottle. Mac Conkey agar, blood agar and chocolate agar plates and fermentation tube were filled with urine samples and incubated at 37 °C for 24 h. MBC was regarded as the lowest concentration that prevented the growth of bacterial colony on this solid medium[27].

2.2. Antibacterial assay

The antibacterial activity of the chosen nanoparticles was performed by using well diffusion method. About 20 mL of sterile molten Mueller Hinton agar (HiMedia Laboratories Pvt. Limited, Mumbai, India) was poured into the sterile petriplates. Triplicates plates were swabbed with the overnight culture (10⁶ cells/mL) of pathogenic bacteria viz., Pseudomonas sp., Enterobacter sp., Klebsiella sp., E. coli, Proteus morganii (P. morganii) and Staphylococcus aureus (S. aureus). The solid medium was gently punctured with the help of cork borer to make a well. Finally, the nanoparticle samples (50 μg/mL) were added from the stock into each well and incubated for 24 h at (37±2) °C. After 24 h, an interval of inhibition was measured and expressed as millimeter in diameter.

2.3. Minimum inhibitory concentration (MIC)

About 500 μL of different concentrations (2.5, 5, 10, 15 and 20 μg) of chosen nanoparticles were prepared with dimethyl sulfoxide (DMSO) and mixed with 450 μL of nutrient broth and 50 μL of 24 h old bacterial inoculum and allowed to grow overnight at 37 °C for 48 h. Nutrient broth alone served as negative control. The MIC was the lowest concentration of the nanoparticles that did not permit any visible growth of bacteria during 24 h of incubation on the basis of turbidity[27].

2.4. Minimum bactericidal concentration (MBC)

To avoid the possibility of misinterpretations due to the turbidity of insoluble compounds if any, the MBC was determined by sub-culturing the above (MIC) serial dilutions after 24 h in nutrient agar plates using 0.01 mL loop and incubated at 37 °C for 24 h. The control was regarded as the lowest concentration that prevented the growth of bacterial colony on this solid medium[27].

2.5. Time kill assay

The potential nanoparticle (Al₂O₃) which showed maximum antibacterial activity against E. coli was also subjected for time kill assay. The inoculum of E. coli (50 μL) at a concentration of (10⁶ cells/mL) was mixed with 50 μL 0.01 g concentration of Al₂O₃ nanoparticle and the total volume was made up to 5 mL by using minimal medium (g/L) [sucrose (10); KH₂PO₄ (2.5); K₂HPO₄ (2.5); (NH₄)₂HPO₄ (1); MgSO₄.7H₂O (0.20); FeSO₄.7H₂O (0.01); MnSO₄.H₂O (0.007) and H₂O (1000 mL)]. The negative control was maintained without the nanoparticles. The growth of the bacterial species was assessed at every 1 h interval by measuring the optical density at 600 nm by using spectrophotometer (Shimadzu, Japan[6]).

3. Results

Out of the 60 midstream urine samples, 45 bacterial strains were isolated and it was identified by using biochemical tests (Table 2). Of these, Pseudomonas sp. is the predominant one (38%), followed by Enterobacter sp. (22%), Klebsiella sp. (18%), E. coli (11%), P. morganii (7%) and S. aureus (4%) (Figure 1). The zone of inhibition of the selected nanoparticles against UTI pathogens was represented in Table 3. It revealed that, the Al₂O₃ nanoparticle showed maximum sensitivity (13.00±0.64) mm against E. coli followed by P. morganii (6.00±0.61) mm and (3.00±0.35) mm against E. coli and P. morganii, respectively. The MgO nanoparticle showed maximum sensitivity (13.00±0.64) mm against E. coli and showed minimum sensitivity (9.00±0.29) mm against Klebsiella sp. and P. morganii, respectively. The Fe₂O₃ nanoparticle showed maximum sensitivity (13.00±0.64) mm against E. coli and showed minimum sensitivity (9.00±0.29) mm against Klebsiella sp. and P. morganii, respectively. The MgO nanoparticle showed maximum sensitivity (10.00±0.64) mm against E. coli, P. morganii (11.00±0.51) mm and Enterobacter sp. (12.00±0.26) mm, respectively. None of the nanoparticles showed sensitivity against Pseudomonas sp. The MIC and MBC revealed that, the Al₂O₃ nanoparticle showed sensitivity at the concentration of 5 μg/mL against E. coli and Klebsiella sp. and P. morganii 10 μg/mL, respectively. Moreover, MgO and ZrO₂ nanoparticles showed maximum sensitivity against E. coli at the concentration of 10 μg/mL, respectively (Table 4). The effect of Al₂O₃ nanoparticle against E. coli was performed with time kill assay. It revealed that, the growth
of the pathogen was inhibited from the 2nd h when compared with control (Figure 2).

Figure 1. Percentage occurrence and distribution of bacterial pathogens in UTIs among the patients (n=45).

Figure 2. Time dependent assay of nanoparticle (Al\textsubscript{2}O\textsubscript{3}) against chosen UTI pathogen E. coli.

4. Discussion

Nanotechnology is an emerging field and it has been applied in science and technology for the purpose of manufacturing new materials at the nanoscale level\cite{28}. In...
the present scenario, the nanoparticles are being emerged as novel antimicrobial agents with unique biological, chemical and physical properties\[29,30\]. Moreover, the advantages of the metal nanoparticles are less toxicity, heat resistance and suitable for biological application\[19,31,32\]. All the nanoparticles showed sensitivity against all the pathogens except *Pseudomonas* sp. Of the selected nanoparticles, the \(\text{Al}_2\text{O}_3\) nanoparticle showed maximum sensitivity against *E. coli*. The MIC result reveals that, the \(\text{Al}_2\text{O}_3\) nanoparticle showed maximum sensitivity at a concentration of 5 \(\mu\text{g/mL}\) against *E. coli*, respectively and this activity might be due to the size, surface morphology, particle morphology and structure of the nanoparticles\[33\].

The oxidative stress in the cell wall might increase the production of lactate dehydrogenase, which is an indicator of cell membrane damage\[58\]. It is concluded from the present findings that, the \(\text{Al}_2\text{O}_3\) nanoparticle could be used as an alternative antibacterial agent for the urinary bacterial diseases after completing successful clinical trials.

Conflict of interest statement

We declare that we have no conflict of interest.

Acknowledgements

The authors are thankful to the authorities of Alagappa University for providing required facilities and also to University Grants Commission, New Delhi for financial assistance with the grant number: F.No.39–563/2010 (SR).

Reference

